首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207666篇
  免费   26846篇
  国内免费   24784篇
电工技术   19307篇
技术理论   8篇
综合类   14742篇
化学工业   42067篇
金属工艺   10806篇
机械仪表   13988篇
建筑科学   9384篇
矿业工程   2308篇
能源动力   7069篇
轻工业   15040篇
水利工程   2499篇
石油天然气   4496篇
武器工业   2095篇
无线电   31574篇
一般工业技术   26787篇
冶金工业   4534篇
原子能技术   3629篇
自动化技术   48963篇
  2024年   512篇
  2023年   3217篇
  2022年   5419篇
  2021年   7313篇
  2020年   7093篇
  2019年   6362篇
  2018年   5932篇
  2017年   8174篇
  2016年   8908篇
  2015年   10301篇
  2014年   10287篇
  2013年   13708篇
  2012年   15792篇
  2011年   18074篇
  2010年   13006篇
  2009年   12953篇
  2008年   14054篇
  2007年   15867篇
  2006年   15141篇
  2005年   12881篇
  2004年   11016篇
  2003年   8679篇
  2002年   6602篇
  2001年   5037篇
  2000年   4011篇
  1999年   3325篇
  1998年   2786篇
  1997年   2209篇
  1996年   1892篇
  1995年   1659篇
  1994年   1482篇
  1993年   1128篇
  1992年   872篇
  1991年   693篇
  1990年   575篇
  1989年   433篇
  1988年   326篇
  1987年   206篇
  1986年   179篇
  1985年   236篇
  1984年   205篇
  1983年   145篇
  1982年   204篇
  1981年   101篇
  1980年   102篇
  1979年   29篇
  1978年   16篇
  1977年   24篇
  1976年   17篇
  1959年   23篇
排序方式: 共有10000条查询结果,搜索用时 115 毫秒
71.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
72.
This paper describes the creation of an environmentally conscious community group, the Great River Network, and the role that it has played in the remediation and restoration process as part of one of the Great Lakes environmental programs. Community engagement was initiated in the region as part of the Remedial Action Plan for the Area of Concern at Cornwall/Akwesasne/Massena within the Upper St. Lawrence River. The community group formalised as a network representing 50+ organisations in response to perceived inadequacies in the agency of the community to respond to new environmental concerns outside of the scope of the existing programs. As a grass-roots initiative, the Great River Network has successfully completed remediation and restoration actions of significant value to the environment. These include a series of river clean ups (>42 tonnes of garbage removed), fish habitat restoration, and addressing shoreline erosion issues. Success has been achieved through partnering with a range of organisations, including Indigenous, non-profit, governmental, Conservation Authorities, businesses and industry partners. The action-oriented approach showcases how remediation and restoration led by, and embedded in, the community can result in true revitalization. A simplified framework for adaptive management practices for remediation and restoration efforts that lead to revitalization, including knowledge translation, is proposed. This case study highlights the transformational opportunities that remediation and restoration initiatives can bring. In this instance, the process is intensely local and cooperative and lays the foundation for moving towards a collective impact approach for the region.  相似文献   
73.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   
74.
To explore the mechanism of phase transformation, YTa3O9 was prepared by an integrated one-step synthesis and sintering method at 1500 °C using Y2O3 and Ta2O5 powders as starting materials. High-temperature XRD patterns and Raman spectra showed that a phase transformation from orthorhombic to tetragonal took place in YTa3O9 through the bond length and angle changes at 300–400 °C, which caused a thermal conductivity rise. To inhibit the phase transformation, a high-entropy (Y0.2La0.2Ce0.2Nd0.2Gd0.2)Ta3O9 (HE RETa3O9) was designed and synthesized at 1550 °C using the integrated solid-state synthesis and sintering method. In tetragonal structured HE RETa3O9, phase transformation was inhibited by the high-entropy effect. Furthermore, HE RETa3O9 exhibited low thermal conductivity, and its tendency to increase with temperature was alleviated (1.69 W/m·K, 1073 K). Good phase stability, low thermal conductivity and comparable fracture toughness to YSZ make HE RETa3O9 promising as a new thermal barrier coating material.  相似文献   
75.
《Ceramics International》2022,48(20):29561-29571
Currently, materials with outstanding absorption abilities, such as thin size, better absorbing power, and light weight are the need of industry to resolve the electromagnetic issues. However, the research on optimizing the composition of the material, microstructure and the structure of the absorber are also the important factors for enhancing the absorption features. A metamaterial microwave absorber (MMA) based on nano ferrites with desirable absorption peaks is proposed and simulated. Sol-gel auto combustion route is used to prepare the nanosized Sm doped Co ferrite with Co1+xSmxFe2-2xO4 at x = 0.00, 0.03, 0.06, 0.09, respectively. XRD, VSM, FESEM, and VNA were employed to evaluate the structural, magnetic, morphological, and dielectric features. Rietveld refinement of the XRD patterns of samples was evaluated. Refined parameters show the spinel phase's emergence and the Fe2O3 phase. Grain size and crystallite size were increased with Sm doping in Co ferrite. Electromagnetic studies depicted that the highest dielectric constant value was found at x = 0.09 and the minimum value at x = 0.03, respectively. Sm doped Co ferrite at x = 0.09 depicted high Q values at higher frequencies. The coercivity values first decreased and then increased. All samples exhibit variations in coercivity and magneto-crystalline anisotropy constant. This variation was attributed to the super-exchange interactions and strong LS coupling of the cations. The multiple absorption peaks are attained for TE-polarization, and the absorptivity is considerably improved for x = 0.09. The proposed absorber simulated from CST depicted the absorption peaks of the S-band and C-band of the microwave regime. The synergistic effects among the metamaterial and ferrite layers may enhance the absorption feature and would be useful for satellite communication applications.  相似文献   
76.
《Ceramics International》2022,48(3):3833-3840
Ca-doped Ni–Mg–Mn spinel ferrites with compositions of Ni0·5Mg0·3Mn0.2CaxFe2-xO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were prepared via sol-gel auto-ignition technique. TGA/DTA, FTIR, XRD, FESEM, and VSM were employed to evaluate the thermal, spectral, structural, morphological, and magnetic features of Ca-doped Ni–Mg–Mn spinel ferrites. TGA/DTA curves show the weight loss in the sample. This weight loss was attributed to the oxidation and decomposition of the sample contents at a temperature of 500 °C. XRD reveals a single-phase structure of the Ni–Mg–Mn nano ferrites. A single-phase orthorhombic structure was confirmed for Ca-doped Ni–Mg–Mn ferrites. Structural parameters such as lattice parameter, ‘da’, ‘db’, ‘dc’, and ‘dv’ were evaluated using unit cell software. The absorption peaks at 427 to 538 cm?1 confirmed the spinel structure, which was evaluated using FTIR. FESEM analyses showed that the agglomerations increased with the doping of Ca in Ni–Mg–Mn ferrites. Remanence, Y–K angles, saturation, coercive force, magnetic squareness, magnetic moment, and anisotropy constant were determined for Ca-doped Ni–Mg–Mn spinel ferrite samples. It is noticed that saturation increases from 29.157 to 51.322 emu/g, whereas remanence increased from 5.34 to 9.40 emu/g, respectively. The permeability, anisotropy constant, and magnetic moments were also found to increase with Ca doping. However, the Y–K angles increased with Ca concentration in Ni–Mg–Mn nano ferrites. In addition, the switching field distribution (SFD) and high-frequency response of all the Ca-doped Ni–Mg–Mn samples were also evaluated. Ca-doped Ni–Mg–Mn samples are suggested to be suitable for switching, filters, inductors, and microwave absorption applications because of the superparamagnetic nature of the prepared spinel ferrites.  相似文献   
77.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   
78.
张亚洲  卢先领 《计算机应用》2020,40(5):1545-1552
针对液晶屏(LCD)导光板表面缺陷检测方法存在漏检率和误检率较高,对产品表面复杂渐变的纹理结构适应性差的问题,提出一种基于改进相干增强扩散(ICED)与纹理能量测度和高斯混合模型(TEM-GMM)的LCD导光板表面缺陷检测方法。首先,构建ICED模型,基于结构张量引入平均曲率流扩散(MCF)滤波,使得相干增强扩散(CED)模型对缺陷的细线状纹理有良好的边缘保持效果,并利用相干性得到缺陷纹理增强和背景纹理抑制的滤波后图像;然后,根据Laws纹理能量测度(TEM)提取图像纹理特征,将图像的背景纹理特征作为离线阶段高斯混合模型(GMM)的训练数据,使用期望最大化(EM)算法估计GMM参数;最后,计算待检测图像各像素的后验概率,并将其作为在线检测阶段缺陷像素的判断依据。实验结果表明,该检测方法在导光颗粒随机、规则两种分布的缺陷图像测试数据组上的漏检率和误检率分别为3.27%、4.32%和3.59%、4.87%。所提检测方法适用范围广,可有效检测出LCD导光板表面划痕、异物、脏污和压伤等类型的缺陷。  相似文献   
79.
Patterned photonic crystals with structural colors on textile substrates have attracted a special attention due to the great advantages in application, which currently become a research hot-spot. This study utilized an ink-jet printing technology to prepare high-quality photonic crystal patterns with structural colors on polyester substrates. The self-assembly temperature of poly(styrene-N-methylol acrylamide) (P(St-NMA)) microspheres set to construct photonic crystals were deeply optimized. Moreover, the structural colors of prepared photonic crystal patterns were characterized and evaluated. When the mass fraction of P(St-NMA) microspheres was 1.0 wt.%, the pH value ranged from 5 to 7, and the surface tension was in the range of 63.79 to 71.20 mN/m, inks could present the best print performance. At 60 °C, prepared P(St-NMA) microsphere inks were good for printing to obtain patterned photonic crystals with regular arrangement and beautiful structural colors. Specifically, photonic crystals with different colors could be constructed by regulating the diameter of microspheres in inks, and prepared structural colors exhibited distinct iridescent phenomenon. The present results could provide a theoretical basis for the industrial realization of patterned photonic crystals by ink-jet printing technology.  相似文献   
80.
地铁混凝土处于地下空间,容易受到地下水的碳酸性侵蚀;碱集料反应 (AAR)是一种严重的混凝土耐久性问题,既难以发现又难以修补,由两者共同作用引起的混凝土耐久性降低严重影响地铁隧道的正常使用.为研究纳米材料对地铁混凝土在碳酸性侵蚀和AAR共同作用下耐久性的影响,在普通混凝土中掺入适量纳米SiO2和纳米Fe2O3,利用自行研制的碳酸性侵蚀试验箱进行试验,采用碳酸性侵蚀深度、膨胀率和声速作为测试指标来评价纳米混凝土在碳酸性侵蚀和AAR共同作用下的耐久性.试验结果表明:掺入纳米颗粒后,混凝土的膨胀率和侵蚀深度有了明显降低,而声速有了明显提升,说明纳米混凝土的耐久性优于普通混凝土;在182 d龄期时,掺量为2%的纳米SiO2混凝土耐久性改善最明显,侵蚀深度和膨胀率最小,声速最大且声速下降幅度最小;其次是掺量为1%的纳米Fe2O3混凝土.由于纳米颗粒特殊的物理化学性质,改善了混凝土内部的微观结构和孔溶液的化学组成,使碳酸性侵蚀和碱集料反应共同作用下混凝土的耐久性得到了提高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号